Effects of Solar Activity on Ionospheric Ion Upflow During Geomagnetic Quiet Periods: DMSP Observations

Author:

Fu Shuai1,Jiang Yong2,Zhang Xiaoping3

Affiliation:

1. State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, PRChina; Macau Center for Space Exploration and Science, CNSA, PR China

2. Institute of Space Weather, Nanjing University of Information Science and Technology, Nanjing, PRChina; Scotland Academy at WXU, Wuxi Taihu University, Wuxi, PRChina

3. State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, PRChina; Macau Center for Space Exploration and Science, CNSA, PRChina

Abstract

AbstractBased on the Defense Meteorological Satellite Program (DMSP) observations during Solar Cycle 23, this paper examines solar activity dependence of ionospheric bulk ion upflow events (IUEs) in the Southern Hemisphere (SH). Much previous similar work was conducted over the Northern Hemisphere (NH) with measurements from European Incoherent Scatter (EISCAT). To eliminate the influence of geomagnetic disturbance on IUEs, we pick out observations during geomagnetic quiet periods (with Kp ≤ 2+). Results show that, ion upward densities and fluxes are dramatically elevated at times of high solar activity (HSA) but ion upward drifts and occurrences are increased at times of low solar activity (LSA) in the SH, which is consistent with the situation in the NH. The ratios between HSA and LSA for these four parameters (IUEs’ density, flux, upward drift and occurrence) are ~2.71, ~1.98, ~0.76 and ~0.57, respectively. Furthermore, lower flux event takes place frequently at LSA as the background ion density is low but the upward drift is large, while higher flux event happens commonly at times of HSA accompanied by high ion density but low upward velocity. Quantitatively, an increase in unit of solar activity (characterized by P index) causes a 4.2×108 m−3 increase in ion density and a 1.2×1011 m−2·s−1 enhancement in upward flux, together with a 0.6 m·s−1 and 0.02 % decrease in ion upward velocity and uprate, respectively. The acceleration from the ambipolar electric field is thought to be a possible mechanism affecting the dependence of IUEs on solar variations. For HSA, the acceleration from the ambipolar electric field weakens, but a large number of background ions provide abundant seeds for acceleration and upflow, which maintains a high IUE flux. It is inferred that upflow events and upward drifts are inhibited by the enhanced ionospheric background density.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3