An outlier detection method with CNN for BeiDou MEO moderate-energy electron data

Author:

Chao Tian1,Ruifei Cui1,Riwei Zhang1,Peikang Xu1,Libo Chen1,Jie Shang1,Lin Quan2,Yujun Wan1,Sihui Hu1,Fulu Yue1,Xing Su1

Affiliation:

1. State Key Laboratory of Astronautic Dynamics , Xi’an 710000 , China

2. Aerospace Engineering Institute , Beijing 100049 , China

Abstract

Abstract BeiDou Medium Earth Orbit moderate-energy electron detection data play an important role in space environment effect analysis including satellite anomaly diagnosis, satellite risk estimation, etc. However, the data contain outliers which cause obstacle for the subsequent usage significantly. To solve this problem, we propose an outlier detection method based on convolutional neural networks (CNNs) which can learn a rule from labeled historical data and detect outliers from the detection data. With this method, we can identify outliers and do some follow-up operations to improve the data quality. In comparison with general methods, this CNN method provides a more reliable and rapid way to build dataset for the follow-up work.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3