Research on real-time reachability evaluation for reentry vehicles based on fuzzy learning

Author:

Ma Hong12,Xu Ke12,Sun Shouming12,Zhang Wei32,Xi Tao12

Affiliation:

1. State Key Laboratory of Astronautic Dynamics , Xi’an 710043 , China

2. Xi’an Satellite Control Center , Xi’an 710043 , China

3. State Key Laboratory of Spacecraft In-Orbit Fault Diagnosis and Maintenance , Xi’an 710043 , China

Abstract

Abstract Accurate and rapid prediction of reentry trajectory and landing point is the basis to ensure the reentry vehicle recovery and rescue, but it has high requirements for the continuity and stability of real-time monitoring and positioning data and the fidelity of the reentry prediction model. In order to solve the above contradiction, based on the theory of relative entropy and closeness in fuzzy learning, research on real-time evaluation of reentry reachability is presented in this article. With the Monte Carlo analysis data during the design and evaluation of the reentry vehicle control system, the reentry trajectory feature information base is designed. With the matching identification decision strategy between the identified trajectory and trajectory feature base, the reachability of the reentry vehicle, reachable trajectory, and landing point can be predicted. The simulation results show that by reasonably selecting the time window and using the evaluation method designed in this article, making statistics of the trajectory sequence number and frequency identified based on relative entropy and closeness method, the reachability evaluation results can be given stably, which is suitable for the real-time task evaluation of TT&C system.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3