Ka/C dual frequency ranging system for ocean altimetry satellite and analysis of ionospheric error

Author:

Li Nan1,Zhai Zhenhe2,Ma Jian2,Guan Bin2,Cui Wenhui1,Li Duan2

Affiliation:

1. State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center , Xi’an , China

2. State Key Laboratory of Geo-information Engineering , Beijing , China

Abstract

Abstract In view of the future development trend of ocean altimetry satellites, the design idea of Ka/C dual frequency combination system is proposed, that is, the mode of using an altimeter antenna to contain Ka and C frequencies (35.7 and 5.3 GHz, respectively) for combined ranging. First, the random error model of altimeter measuring the distance from the altimeter phase center to the sea surface is given, and the analysis shows that the ionospheric correction error is one of the important factors. Second, the calculation of typical ionospheric parameters shows that the influence of ionospheric higher order terms on altimeter ranging is below the mm level, and its influence can be ignored. The rigorous expression for the first-order and second-order term correction of ionosphere error are given, respectively, by using dual frequency and three frequencies. The computational experiment of Jason-2 and SARAL satellite show that the maximum magnitude of ionospheric error correction in Ku band can reach 11 cm, while the maximum magnitude of ionospheric error correction in Ka band can reach 2 cm. For high-precision applications, ionospheric corrections must be made for single Ka frequency. After Ka/C dual frequency combination is adopted, error correction can be directly conducted without global ionospheric map (GIM) model, and its accuracy will be further improved than GIM model. Under 1 Hz sampling conditions, the ionospheric correction accuracy of Ka/C combination can be better than 2.5 mm, basically eliminating the influence of the ionosphere, and the total ranging accuracy can reach 3.5 cm considering the propagation error.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3