Improvement of orbit prediction accuracy using extreme gradient boosting and principal component analysis

Author:

Zhai Min1,Huyan Zongbo1,Hu Yuanyuan1,Jiang Yu1,Li Hengnian1

Affiliation:

1. State Key Laboratory of Astronautic Dynamics , Xi’an Satellite Control Center , Xi’an 710043 , China

Abstract

Abstract High-accuracy orbit prediction plays a crucial role in several aerospace applications, such as satellite navigation, orbital maneuver, space situational awareness, etc. The conventional methods of orbit prediction are usually based on dynamic models with clear mathematical expressions. However, coefficients of perturbation forces and relevant features of satellites are approximate values, which induces errors during the process of orbit prediction. In this study, a new orbit prediction model based on principal component analysis (PCA) and extreme gradient boosting (XGBoost) model is proposed to improve the accuracy of orbit prediction by learning from the historical data in a simulated environment. First, a series of experiments are conducted to determine the approximate numbers of features, which are used in the following machine learning (ML) process. Then, PCA and XGBoost models are used to find incremental corrections to orbit prediction with dynamic models. The results reveal that the designed framework based on PCA and XGBoost models can effectively improve the orbit prediction accuracy in most cases. More importantly, the proposed model has excellent generalization capability for different satellites, which means that a model learned from one satellite can be used on another new satellite without learning from the historical data of the target satellite. Overall, it has been proved that the proposed ML model can be a supplement to dynamic models for improving the orbit prediction accuracy.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3