Flake Drying Temperature Affects Mat Properties during Pressing

Author:

Martino C. J.,Shrauti S.,Banerjee S.,Otwell L. P.,Price E. W.

Abstract

Summary The contact angle of water on wood rises sharply as the wood approaches dryness. The general shape of the rise can be reproduced through thermodynamic calculations that consider the presence of extractives on the surface. SEM work confirms that extractives move progressively to the surface with increasing drying temperature. Other factors such as pore closure also contribute to surface hydrophobicity. The temperature profile within a stack of flakes during accelerated pressing shows a break at 100°C when flakes dried at high temperature are processed. Moisture is known to be driven from the outer layers of the stack to the core during early pressing. If the flake surface is hydrophobic then this moisture would film on the surface rather than penetrate into the flake. Subsequent evaporation of the moisture would lead to high pressure. Hence, flakes dried at high temperature should be more prone to delamination. High-temperature drying also promotes VOC emissions and there should be operational and environmental benefits to drying at lower temperature.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3