Complexes between core-modified porphyrins ZnP(X)4 (X = P and S) and small semiconductor nanoparticle Zn6S6: are they possible?

Author:

Kuznetsov Aleksey E.

Abstract

Abstract The synthetic approach of the anchoring of porphyrins to the surface of semiconductor nanoparticles (NPs) has been realized to form very promising organic/inorganic nanocomposites. They have been of considerable scientific and a wide practical interest including such areas as material science, biomedical applications, and dye-sensitized solar cells (DSSCs). Macrocyclic pyrrole-containing compounds, such as phthalocyanines and porphyrins, can bind to the NP surface by a variety of modes: as monodentate ligands oriented perpendicular to the NP surface, parallel to the NP surface, or, alternatively, in a perpendicular orientation bridging two adjacent NPs. Also, non-covalent (coordination) interactions may be realized between the NP via its metal centers and appropriate meso-attached groups of porphyrins. Recently, we showed computationally that the prominent structural feature of the core-modified MP(X)4 porphyrins (X = P) is their significant distortion from planarity. Motivated by the phenomenon of numerous complexes formation between tetrapyrrols and NPs, we performed the density functional theory (DFT) studies of the complex formation between the core-modified ZnP(X)4 species (X = P and S) without any substituents or linkers and semiconductor NPs, exemplified by small NP Zn6S6. The complexes formation was investigated using the following theoretical approaches: (i) B3LYP/6-31G* and (ii) CAM-B3LYP/6-31G*, both in the gas phase and with implicit effects from C6H6 considered. The calculated binding energies of the complexes studied were found to be significant, varying from ca. 29 up to ca. 69 kcal/mol, depending on the complex and the approach employed.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Reference116 articles.

1. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint;Chem Rev,1988

2. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules;J Chem Phys,1971

3. An oscillating molecular turnstile;Dalton Trans,2011

4. Understanding the electronic structure of graphene quantum dotfullerene nanohybrids for photovoltaic applications;Z Phys Chem,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3