DFT computations on vibrational spectra: Scaling procedures to improve the wavenumbers

Author:

Palafox M. Alcolea

Abstract

Abstract The performance of ab initio and density functional theory (DFT) methods in calculating the vibrational wavenumbers in the isolated state was analyzed. To correct the calculated values, several scaling procedures were described in detail. The two linear scaling equation (TLSE) procedure leads to the lowest error and it is recommended for scaling. A comprehensive compendium of the main scale factors and scaling equations available to date for a good accurate prediction of the wavenumbers was also shown. Examples of each case were presented, with special attention to the benzene and uracil molecules and to some of their derivatives. Several DFT methods and basis sets were used. After scaling, the X3LYP/DFT method leads to the lowest error in these molecules. The B3LYP method appears closely in accuracy, and it is also recommended to be used. The accuracy of the results in the solid state was shown and several additional corrections are presented.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3