Multi-facets of kinetic roughening of interfaces

Author:

Nath Palash,Jana Debnarayan

Abstract

Abstract In this review, the authors are going to explore the intriguing aspects of kinetic roughening of interfaces. Interface roughness dynamics connected with various physical processes have been studied through novel microscopic models in connection with experiments. The statistical properties of such rough interfaces appearing in wide range of physical systems are observed to belong to different universality classes characterized by the scaling exponents. With the advancement of characterization techniques, the scaling exponents of thin-film surface (or the morphological evolution of amorphous surfaces eroded by ion bombardment) are easily computed even in situ during the growing (erosion) conditions. The relevant key physical parameters during the dynamics crucially control the overall scaling behaviour as well as the scaling exponents. The non-universal nature of scaling exponents is emphasized on the variations of the physical parameters in experimental studies and also in theoretical models. Overall, this review containing both theoretical and experimental results will unfold some novel features of surface morphology and its evolution and shed important directions to build an appropriate theoretical framework to explain the observations in systematic and consistent experiments.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Reference270 articles.

1. Universal non-equilibrium phenomena at submicrometric surfaces and interfaces;Euro Phys J Special Topics,2007

2. Dynamic scaling for a competitive growth process: random deposition versus ballistic deposition;J Phys A,2001

3. Restricted curvature model with suppression of extremal height;Phys Rev E,2002

4. Fractal and multifractal analysis of LiF thin film surface;Appl Surf Sci,2012

5. Faceting phase transitions of crystals;Sov Phys JETP,1981

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3