Proposal for a New Quantum Theory of Gravity

Author:

Singh Tejinder P.1

Affiliation:

1. Tata Institute of Fundamental Research , Homi Bhabha Road, Mumbai 400005 , India

Abstract

Abstract We recall a classical theory of torsion gravity with an asymmetric metric, sourced by a Nambu–Goto + Kalb–Ramond string [R. T. Hammond, Rep. Prog. Phys. 65, 599 (2002)]. We explain why this is a significant gravitational theory and in what sense classical general relativity is an approximation to it. We propose that a noncommutative generalisation of this theory (in the sense of Connes’ noncommutative geometry and Adler’s trace dynamics) is a “quantum theory of gravity.” The theory is in fact a classical matrix dynamics with only two fundamental constants – the square of the Planck length and the speed of light, along with the two string tensions as parameters. The guiding symmetry principle is that the theory should be covariant under general coordinate transformations of noncommuting coordinates. The action for this noncommutative torsion gravity can be elegantly expressed as an invariant area integral and represents an atom of space–time–matter. The statistical thermodynamics of a large number of such atoms yields the laws of quantum gravity and quantum field theory, at thermodynamic equilibrium. Spontaneous localisation caused by large fluctuations away from equilibrium is responsible for the emergence of classical space–time and the field equations of classical general relativity. The resolution of the quantum measurement problem by spontaneous collapse is an inevitable consequence of this process. Quantum theory and general relativity are both seen as emergent phenomena, resulting from coarse graining of the underlying noncommutative geometry. We explain the profound role played by entanglement in this theory: entanglement describes interaction between the atoms of space–time–matter, and indeed entanglement appears to be more fundamental than quantum theory or space–time. We also comment on possible implications for black hole entropy and evaporation and for cosmology. We list the intermediate mathematical analysis that remains to be done to complete this programme.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Reference40 articles.

1. T. P. Singh, Bulg. J. Phys. 33, 217 (2006).

2. T. P. Singh, in: Re-thinking Time at the Interface of Physics and Philosophy (arXiv:1210.81110), (Eds. T. Filk, A. von Muller), Springer, Berlin-Heidelberg 2015.

3. T. P. Singh, in: Collapse of the Wave Function, (Ed. S. Gao), Cambridge University Press, Cambridge 2018.

4. T. P. Singh, Z. Naturforsch. Pt. A 74, 147 (2019).

5. R. T. Hammond, Rep. Prog. Phys. 65, 599 (2002).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3