Structure and Optical Properties of TiO2 Thin Films Prepared by a Sol-Gel Processing

Author:

Kayani Zohra N.1,Saleem Mehawish2,Riaz Saira3,Naseem Shahzad3,Saleemi Farhat2

Affiliation:

1. Department of Physics , Lahore College for Women University , Lahore 54000, Pakistan , Phone: 0092-42-99203801-9 (248), Fax: 0092-42-99203877

2. Lahore College for Women University , Lahore 54000, Pakistan

3. Centre of Excellence in Solid State Physics, University of the Punjab , Lahore 54950, Pakistan

Abstract

Abstract Titanium dioxide (TiO2) thin films were deposited on CR-39 by a sol-gel dip coating route with different withdrawal speeds ranging from 250 to 350 mm/s. The TiO2 thin films were characterised by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, ellipsometry, and ultraviolet (UV)-visible (VIS)-near infrared (NIR) spectro-photometry. The role of withdrawal speed on the thickness of thin films to tailor properties of TiO2 thin films was studied. The XRD results revealed that all the films are amorphous in nature. TiO2 thin films deposited at different withdrawal speeds exhibit a decrease in transmission with an increase in speed. The direct optical band gap of the films has been estimated to be in the range 3.48–3.00 eV by UV-VIS-NIR spectro-photometry and 3.52–3.38 eV by ellipsometry. TiO2 is a potential prospect in microelectronic applications and can serve as an absorber layer for photovoltaic devices. Surface morphology is granular with an increase in grain size and an increase in withdrawal speed.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3