Author:
Gameiro Celina Pires,Cirne José,Miranda Victor,Pinho-da-Cruz Joaquim,Teixeira-Dias Filipe
Abstract
Abstract
Cork is a unique and complex natural cellular material with many industrial applications. The purpose of this paper is to explore a new application field for the use of micro-agglomerate cork as an energy-absorbing medium. A numerical study on the energy absorption capabilities of square and circular cork-filled aluminium tubes with a width or diameter of 80 mm, length of 300 mm and variable thickness was performed with the finite element method code LS-DYNA™. The tubes were impacted uniaxially at 10 and 15 m s-1. The same analysis was carried out on aluminium foam-filled tubes. The results demonstrate that cork filling leads to a considerable increase in the energy absorbed for both section geometries, and that tube thickness plays an important role in the deformation modes and energy absorption. The investigation revealed better results for aluminium foam-filled structures, but demonstrated that micro-agglomerate cork has high potential as an energy-absorbing medium in crash protection applications.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献