A note on bf -spaces and on the distribution of the functor of the Dieudonné completion

Author:

Sanchis Manuel1,Valero Óscar2

Affiliation:

1. Institut de Matemàtques , Universitat Jaume I de Castelló

2. Mathematics and Computer Science Department , Balearic Islands University ,

Abstract

Abstract A subset B of a space X is said to be bounded (in X) if the restriction to B of every real-valued continuous function on X is bounded. A real-valued function on X is called bf -continuous if its restriction to each bounded subset of X has a continuous extension to the whole space X. bf -spaces are spaces such that bf -continuous functions are continuous. We take advantage to the exponential map in the realm of bf -spaces in order to study bf -extensions of bf -continuous functions. This allows us to improve several results concerning the distribution of the functor of the Dieudonné completion. We also prove that a relative version of the classical Glicksberg’s theorem characterizing the product of two pseudocompact spaces is valid for kr- spaces. In the last section we show that bf -hemibounded groups are Moscow spaces and, consequently, they are strong-PT-groups.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Geometry and Topology,Algebra and Number Theory

Reference35 articles.

1. [1] Arhangel’skii, A.V. Functional tightness, Q-spaces, and τ-embeddings. Comment. Math. Univ. Carolinae 24:1 (1983), 105–120.

2. [2] Arhangel’skii, A.V. Moscow spaces, Pestov-Tkačenko Problem, and C-embeddings. Comment. Math. Univ. Carolin. 41 (2000), 585–595.

3. [3] Arhangel’skii, A.V. Topological groups and C-embeddings. Topology Appl. 115 (2001), 265–289.

4. [4] Arhangel’skii, A.V. and Hušek, M. Extension of topological and semitopological groups and the product operation. Comment. Math. Univ. Carolin. 42 (2001), 173–186.

5. [5] Arhangel’skii, A.V. and Tkachenko, M. Topological groups and related structures. Atlantis Studies in Mathematics, 1. Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ, 2008.10.2991/978-94-91216-35-0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3