Affiliation:
1. Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149 Münster, Germany
2. Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS [UPR 9048], Université Bordeaux 1, 87 avenue du Docteur Albert Schweitzer, 33608 Pessac Cedex, France
Abstract
Abstract
The series of magnesium compounds RE4RhMg (RE = Y, La-Nd, Sm, Gd-Tm, Lu) was prepared by high-frequency melting of the elements in sealed tantalum tubes. All samples were investigated by powder X-ray diffraction. The structures with RE = Sm, Gd, Dy, Ho, and Er as rare earth metal components were refined from single crystal diffractometer data: Gd4RhIn-type, F4̄3m, Z = 16, a = 1392.1(1) pm, wR2 = 0.060, 616 F2 values, 19 variables for Sm4RhMg, a = 1380.8(2) pm, wR2 = 0.071, 530 F2 values, 19 variables for Gd4RhMg, a = 1366.9(1) pm, wR2 = 0.070, 594 F2 values, 20 variables for Dy4RhMg, a = 1355.7(2) pm, wR2 = 0.077, 578 F2 values, 20 variables for Ho3.52RhMg1.48, and a = 1355.4(2) pm, wR2 = 0.075, 559 F2 values, 20 variables for Er3.94RhMg1.06 .The rhodium atoms have slightly distorted trigonal prismatic rare earth coordination. Condensation of the RhRE6 prisms leads to a three-dimensional network which leaves large voids that are filled by regular Mg4 tetrahedra with a Mg-Mg distance of 312 pm in Sm4RhMg. The magnesium atoms have twelve nearest neighbors (3 Mg + 9 RE) in icosahedral coordination. In the structures with holmium and erbium, the RE1 positions which are not involved in the trigonal prismatic network exhibit RE1/Mg mixing. Shortest distances occur for Sm-Rh (286 pm) within the rigid three-dimensional network of condensed trigonal prisms.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献