Paraquat Resistance of Weeds - the Case of Conyza canadensis (L.) Cronq

Author:

Szigeti Zoltán1,Rácz Ilona1,Lásztity Demeter1

Affiliation:

1. Eötvös Loränd University, Department of Plant Physiology, H-1445 Budapest, P. O. B. 330, Hungary.

Abstract

The paper gives an overview of literature on paraquat resistance of weeds and the proposed mechanism of resistance. New results we achieved on horseweed ( Conyza canadensis /L./, Cronq.) are discussed in detail. It was demonstrated that there is no significant constitutive difference related to the paraquat resistance between untreated susceptible and paraquat-resistant horseweed plants. The lower sensitivity of flowering resistant plants may be due to the fact that paraquat content in treated leaves of flowering resistant plants was only 25% as compared to those measured at rosette stage. Our results confirm that paraquat resistance is not based on elevated level and activity of antioxidant enzyme system. The hypothesized role of polyamines in the resistance mechanisms can be excluded. The higher putrescine and total polyamine content of paraquat treated resistant leaves can rather be regarded as a general stress response, than as a symptom of paraquat resistance. A paraquat-inducible protein is supposed to play a role in the resistance, which presumably functions by binding paraquat to an inactivating site and/ or by carrying paraquat to metabolically inactive cell compartment (vacuole, cell wall). From model experiments it is concluded that paraquat and diquat preferentially form hydrophylic interactions with proteins containing a higher amount of lysine and glutamic acid. Consequently, the reason for paraquat resistance in horseweed is probably a hydrophylic interaction of paraquat with a protein, leading to inactivation of paraquat through forming a conjugate and/or sequestration into the vacuole or the cell wall.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3