Simple and easy way for students to develop a dynamic model on Excel sheet

Author:

Kamata Masahiro1,Kamata Asuka2

Affiliation:

1. Science Education , Tokyo Gakugei University , 4-1-1 Nukuikitamachi , Koganei-shi , Tokyo 184-8501, Japan

2. Independent Researcher , Tokyo , Japan

Abstract

Abstract Radioactive decay is not only important in the field of radiochemistry but also useful as a teaching material for chemical kinetics. Although differential equations are often used to explain how decay rate changes over time, there are many students even in college or university who are not very good at mathematics and have difficulty in solving differential equations. Those students are expected to appreciate institutive and schematic illustrations using Excel sheets. In this paper, a water and tank model to demonstrate how radionuclides decay and decrease over time is presented as an example of the model that the students can develop or rearrange by themselves. Therefore, only four arithmetical operations were used in the sheet, so that the students can easily grasp the basic concept of a decay curve or radioactive equilibrium even if they do not have great knowledge of differential equations. In addition, only “Record Macro” and built in “Charts” were used on the sheet, and therefore, no knowledge or skill in graphic programming, such as Visual Basic, is needed to make and use the sheet. A brief online survey indicated the model was interesting to high school students. Since Excel is widely used all over the world, the sheets we have developed can be used in many countries without additional expense.

Publisher

Walter de Gruyter GmbH

Subject

Education,Chemistry (miscellaneous)

Reference9 articles.

1. Andrews, D. G. H. (2009). An Excel™ model of a radioactive series. Physics Education, 44(1), 48–52. https://doi.org/10.1088/0031-9120/44/1/007.

2. Kamata, M., & Watanabe, C. (2000). Usage example of Microsoft Excel for radiation education. Radiation Education (in Japan), 4, 18–25.

3. Lingard, M. (2003). Using spreadsheet modelling to teach about feedback in physics. Physics Education, 38(5), 418–422. https://doi.org/10.1088/0031-9120/38/5/306.

4. MEXT: Ministry of Education, Culture, Sports, Science and Technology. (2020a). Course of study for junior high school science: p. 41, p. 64. Retrieved from https://www.mext.go.jp/component/a_menu/education/micro_detail/__icsFiles/afieldfile/2019/03/18/1387018_005.pdf.

5. MEXT: Ministry of Education, Culture, Sports, Science and Technology. (2020b). Course of study for high school science: p. 57. Retrieved from https://www.mext.go.jp/content/1407073_06_1_2.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3