Research on Transmission Performance of Different Modulation Formats Based on Re-modulation WDM-PON

Author:

Li Li1,Feng He2

Affiliation:

1. Department of Electronic Information and Electrical Engineering , Anyang Institute of Technology , Anyang 455000 , China

2. Department of Computer Science and Information Engineering , Anyang Institute of Technology , Anyang 455000 , China

Abstract

Abstract Dispersion and nonlinear effects will increase the effect on the system when the optical information transmits in high speed and long distance. The new optical modulation technology can reduce the attenuation caused by transmission procedure. In this paper, OptiSystem and Matlab were combined to set a model by comparing the dispersion tolerance and nonlinear effect of different code modulation formats. After that, the better performance code of IRZ (Inverse Return-to-Zero) and DQPSK (Differential Quadrature Phase Shifted Keying) will be used to study their properties in 10Gbit/s re-modulation WDM-PON access model. The DQPSK was used in downlink, IRZ modulation was used in uplink adopts the IRZ modulation was used in 10 Gbit/s re-modulation WDM passive optical network access model uplink on the basis of the above method. A simulation analysis is also made between the different duty ratios of the DQPSK and IRZ. Compared with the NRZ type, the IRZ has a better anti-dispersion property, channel crosstalk suppression ability and higher spectrum efficiency although it costs 3 dB powers. At the same time, it simplifies the structure of the ONU on the premise of not increasing the power and the cost. So, it fits the large capacity requirements between user stations and the central office in the future.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3