Affiliation:
1. Département de Mathématiques , Faculté des Sciences , Université 20 Août 1955 – Skikda , B.P.26 Route El-Hadaiek-Skikda , Algeria
Abstract
Abstract
The aim of this paper is to study a quasistatic contact problem between an
electro-elastic viscoplastic body with damage and an electrically conductive
foundation. The contact is modelled with an electrical condition, normal
compliance and the associated version of Coulomb’s law of dry friction in
which slip dependent friction is included. We derive a variational
formulation for the model and, under a smallness assumption, we prove the
existence and uniqueness of a weak solution.
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Mathematical Physics
Reference20 articles.
1. M. Barboteu and M. Sofonea,
Analysis and numerical approach of a piezoelectric contact problem,
Ann. Acad. Rom. Sci. Ser. Math. Appl. 1 (2009), no. 1, 7–30.
2. R. C. Batra and J. S. Yang,
Saint-Venant’s principle in linear piezoelectricity,
J. Elasticity 38 (1995), no. 2, 209–218.
3. H. Benaissa, E.-H. Essoufi and R. Fakhar,
Analysis of a Signorini problem with nonlocal friction in thermo-piezoelectricity,
Glas. Mat. Ser. III 51(71) (2016), no. 2, 391–411.
4. H. Brezis,
Équations et inéquations non linéaires dans les espaces vectoriels en dualité,
Ann. Inst. Fourier (Grenoble) 18 (1968), no. 1, 115–175.
5. G. Duvaut and J.-L. Lions,
Les inéquations en mécanique et en physique,
Dunod, Paris, 1972.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献