Heterogenous nuclear ribonucleoprotein D-like controls endothelial cell functions
Author:
Fischer Sandra1, Lichtenthaeler Chiara1, Stepanenko Anastasiya2, Heyl Florian3, Maticzka Daniel3, Kemmerer Katrin1, Klostermann Melina2ORCID, Backofen Rolf3ORCID, Zarnack Kathi2ORCID, Weigand Julia E.1ORCID
Affiliation:
1. Department of Pharmacy , Institute of Pharmaceutical Chemistry, University of Marburg , Marbacher Weg 6, D-35037 Marburg , Germany 2. Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt , Max-von-Laue-Str. 15, D-60438 Frankfurt am Main , Germany 3. Department of Bioinformatics , University of Freiburg , Georges-Köhler-Allee 106, D-79110 Freiburg , Germany
Abstract
Abstract
HnRNPs are ubiquitously expressed RNA-binding proteins, tightly controlling posttranscriptional gene regulation. Consequently, hnRNP networks are essential for cellular homeostasis and their dysregulation is associated with cancer and other diseases. However, the physiological function of hnRNPs in non-cancerous cell systems are poorly understood. We analyzed the importance of HNRNPDL in endothelial cell functions. Knockdown of HNRNPDL led to impaired proliferation, migration and sprouting of spheroids. Transcriptome analysis identified cyclin D1 (CCND1) and tropomyosin 4 (TPM4) as targets of HNRNPDL, reflecting the phenotypic changes after knockdown. Our findings underline the importance of HNRNPDL for the homeostasis of physiological processes in endothelial cells.
Funder
Dr. Hans Messer Stiftung Deutsche Forschungsgemeinschaft Dr. Ing. Wilhelm und Maria Kirmser-Stiftung
Publisher
Walter de Gruyter GmbH
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Reference67 articles.
1. Al-Khalaf, H.H., Colak, D., Al-Saif, M., Al-Bakheet, A., Hendrayani, S.-F., Al-Yousef, N., Kaya, N., Khabar, K.S., and Aboussekhra, A. (2011). p16INK4A positively regulates cyclin D1 and E2F1 through negative control of AUF1. PLOS ONE 6: e21111, https://doi.org/10.1371/journal.pone.0021111. 2. \Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169, https://doi.org/10.1093/bioinformatics/btu638. 3. Azam, S.H., Porrello, A., Harrison, E.B., Leslie, P.L., Liu, X., Waugh, T.A., Belanger, A., Mangala, L.S., Lopez-Berestein, G., Wilson, H.L., et al.. (2019). Quaking orchestrates a post-transcriptional regulatory network of endothelial cell cycle progression critical to angiogenesis and metastasis. Oncogene 38: 5191–5210, https://doi.org/10.1038/s41388-019-0786-6. 4. Bakheet, T., Hitti, E., Al-Saif, M., Moghrabi, W.N., and Khabar, K.S.A. (2018). The AU-rich element landscape across human transcriptome reveals a large proportion in introns and regulation by ELAVL1/HuR. Biochim. Biophys. Acta BBA - Gene Regul. Mech. 1861: 167–177, https://doi.org/10.1016/j.bbagrm.2017.12.006. 5. Batlle, C., Yang, P., Coughlin, M., Messing, J., Pesarrodona, M., Szulc, E., Salvatella, X., Kim, H.J., Taylor, J.P., and Ventura, S. (2020). hnRNPDL phase separation is regulated by alternative splicing and disease-causing mutations accelerate its aggregation. Cell Rep 30: 1117–1128.e5, https://doi.org/10.1016/j.celrep.2019.12.080.
|
|