18β-glycyrrhetinic acid alleviates radiation-induced skin injury by activating the Nrf2/HO-1 signaling pathway

Author:

Wang Zeng12,Chen Ruiqing12,Chen Junying12,Su Li234

Affiliation:

1. Central Laboratory , 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005 , China

2. Key Laboratory of Radiation Biology of Fujian Higher Education Institutions , 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005 , China

3. Department of Radiotherapy, Cancer Center , 117888 First Affiliated Hospital of Fujian Medical University , No.20 Chazhong Road, Taijiang District , Fuzhou 350005 , China

4. Department of Radiotherapy, National Regional Medical Center , 117888 Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou 350005 , China

Abstract

Abstract Radiation-induced skin injury is a common side effect of radiotherapy, but there are few therapeutic drugs available for prevention or treatment. In this study, we demonstrate that 18β-Glycyrrhetinic acid (18β-GA), a bioactive component derived from Glycyrrhiza glabra, substantially reduces the accumulation of reactive oxygen species (ROS) and inhibits apoptosis in HaCaT cells after ionizing radiation (IR), thereby mitigating radiation-induced skin injury. Mechanistically, 18β-GA promotes the nuclear import of Nrf2, leading to activation of the Nrf2/HO-1 signaling pathway in response to IR. Importantly, Nrf2 silencing increases cell apoptosis and reverse the protective effect of 18β-GA on radiation-induced skin injury. Furthermore, 18β-GA preserves skin tissue structure after irradiation, inhibits inflammatory cell infiltration, and alleviates radiation dermatitis. In conclusion, our results suggest that 18β-GA reduces intracellular ROS production and apoptosis by activating the Nrf2/HO-1 signaling pathway, leading to amelioration of radiation dermatitis.

Funder

Natural Science Foundation of Fujian Province

Fujian Provincial Health Technology Project

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3