Characterization of the active site in the thiocyanate-forming protein from Thlaspi arvense (TaTFP) using EPR spectroscopy

Author:

Hashemi Haeri Haleh1,Schneegans Nicola2,Eisenschmidt-Bönn Daniela3,Brandt Wolfgang3,Wittstock Ute2,Hinderberger Dariush1ORCID

Affiliation:

1. Martin Luther University Halle-Wittenberg, Institute of Chemistry , Von-Danckelmann-Platz 4, D-06120 Halle (Saale) , Germany

2. Institute of Pharmaceutical Biology, Technische Universität Braunschweig , D-38106 Braunschweig , Germany

3. Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , D-06120 Halle (Saale) , Germany

Abstract

Abstract Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from Thlaspi arvense (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.g. nitriles or thiocyanates. To resolve the electronic state of the bound iron cofactor in TaTFP, we applied continuous wave electron paramagnetic resonance (CW EPR) spectroscopy at X-and Q-band frequencies (∼9.4 and ∼34 GHz). We found characteristic features of high spin and low spin states of a d 5 electronic configuration and local rhombic symmetry during catalysis. We monitored the oxidation states of bound iron during conversion of allylglucosinolate by myrosinase and TaTFP in presence and absence of supplemented Fe2+. Without added Fe2+, most high spin features of bound Fe3+ were preserved, while different g’-values of the low spin part indicated slight rearrangements in the coordination sphere and/or structural geometry. We also examined involvement of the redox pair Fe3+/Fe2 in samples with supplemented Fe2+. The absence of any EPR signal related to Fe3+ or Fe2+ using an iron-binding deficient TaTFP variant allowed us to conclude that recorded EPR signals originated from the bound iron cofactor.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3