Towards correlative archaeology of the human mind
Author:
Piszczek Lukasz1, Kaczanowska Joanna2, Haubensak Wulf13ORCID
Affiliation:
1. Department of Neuronal Cell Biology , Center for Brain Research, Medical University of Vienna , A-Vienna , Austria 2. a:head bio , Dr.-Bohr-Gasse 7, VBC6, A-1030 Vienna , Austria 3. Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC) , Campus-Vienna-Biocenter 1, A-1030 Vienna , Austria
Abstract
Abstract
Retracing human cognitive origins started out at the systems level with the top-down interpretation of archaeological records spanning from man-made artifacts to endocasts of ancient skulls. With emerging evolutionary genetics and organoid technologies, it is now possible to deconstruct evolutionary processes on a molecular/cellular level from the bottom-up by functionally testing archaic alleles in experimental models. The current challenge is to complement these approaches with novel strategies that allow a holistic reconstruction of evolutionary patterns across human cognitive domains. We argue that computational neuroarcheology can provide such a critical mesoscale framework at the brain network-level, linking molecular/cellular (bottom-up) to systems (top-down) level data for the correlative archeology of the human mind.
Funder
FP7 Ideas: European Research Council Austrian Science Fund
Publisher
Walter de Gruyter GmbH
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Reference54 articles.
1. Alperson-Afil, N., Sharon, G., Kislev, M., Melamed, Y., Zohar, I., Ashkenazi, S., Rabinovich, R., Biton, R., Werker, E., Hartman, G., et al.. (2009). Spatial organization of hominin activities at Gesher Benot Ya’aqov, Israel. Science 326: 1677–1680, https://doi.org/10.1126/science.1180695. 2. Antón, S.C. (2003). Natural history of Homo erectus. Am. J. Phys. Anthropol. 122: 126–170, https://doi.org/10.1002/ajpa.10399. 3. Brand, C.M, Colbran, L.L., and Capra, J.A. (2022). Predicting archaic hominin phenotypes from genomic data. Annu. Rev. Genomics Hum. Genet. 23: 591–612, https://doi.org/10.1146/annurev-genom-111521-121903. 4. Castellano, S., Parra, G., Sánchez-Quinto, F.A., Racimo, F., Kuhlwilm, M., Kircher, M., Sawyer, S., Fu, Q., Heinze, A., Nickel, B., et al.. (2014). Patterns of coding variation in the complete exomes of three Neandertals. Proc. Natl. Acad. Sci. U.S.A. 111: 6666–6671, https://doi.org/10.1073/pnas.1405138111. 5. Chan, Y.-C., Kienle, E., Oti, M., Di Liddo, A., Mendez-Lago, M., Aschauer, D.F., Peter, M., Pagani, M., Arnold, C., Vonderheit, A., et al.. (2023). An unbiased AAV-STARR-seq screen revealing the enhancer activity map of genomic regions in the mouse brain in vivo. Sci. Rep. 13: 6745, https://doi.org/10.1038/s41598-023-33448-w.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|