On simultaneous limits for aggregation of stationary randomized INAR(1) processes with poisson innovations

Author:

Barczy Mátyás1,Nedényi Fanni K.1,Pap Gyula2

Affiliation:

1. MTA-SZTE Analysis and Stochastics Research Group , Bolyai Institute , University of Szeged , Aradi vértanúk tere 1 , , Szeged Hungary

2. Bolyai Institute , University of Szeged , Aradi vértanúk tere 1 , , Szeged , Hungary

Abstract

Abstract We investigate joint temporal and contemporaneous aggregation of N independent copies of strictly stationary INteger-valued AutoRegressive processes of order 1 (INAR(1)) with random coefficient α ∈ (0, 1) and with idiosyncratic Poisson innovations. Assuming that α has a density function of the form ψ(x) (1 − x) β , x ∈ (0, 1), with β ∈ (−1, ∞) and lim x 1 ψ ( x ) = ψ 1 ( 0 , ) $\lim\limits_{x\uparrow 1} \psi(x) = \psi_1 \in (0, \infty)$ , different limits of appropriately centered and scaled aggregated partial sums are shown to exist for β ∈ (−1, 0] in the so-called simultaneous case, i.e., when both N and the time scale n increase to infinity at a given rate. The case β ∈ (0, ∞) remains open. We also give a new explicit formula for the joint characteristic functions of finite dimensional distributions of the appropriately centered aggregated process in question.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference26 articles.

1. Al-Osh, M. A.—Alzaid, A. A.: First-order integer-valued autoregressive (INAR(1)) process, J. Time Series Anal. 8(3) (1987), 261–275.

2. Barczy, M.—Basrak, B.—Kevei, P.—Pap, G.—Planinić, H.: Statistical inference of subcritical strongly stationary Galton–Watson processes with regularly varying immigration, Stochastic Process. Appl. 132 (2021), 33–75.

3. Barczy, M.—Nedényi, F.—Pap, G.: Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations, https://arxiv.org/abs/1509.05149; this is an extended version of [4].

4. Barczy, M.—Nedényi, F.—Pap., G.: Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations, J. Math. Anal. Appl. 451(1) (2017), 524–543.

5. Barczy, M.—Nedényi, F. K.—Pap, G.: On simultaneous limits for aggregation of stationary randomized INAR(1) processes with Poisson innovations, https://arxiv.org/abs/2001.07127.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3