Conformal vector fields on almost co-Kähler manifolds

Author:

De Uday Chand1,Suh Young Jin2,Chaubey Sudhakar K.3

Affiliation:

1. Department of Pure Mathematics , University of Calcutta , 35, Ballygunge Circular Road Kol- 700019 , West Bengal , India

2. Department of Mathematics and Research Institute of Real & Complex Manifolds , Kyungpook National University , Daegu , 41566 , Republic of Korea

3. Section of Mathematics Department of Information Technology , University of Technology and Applied Sciences-Shinas , P.O. Box 77 Postal Code 324 , UTAS-Shinas , Oman

Abstract

Abstract In this paper, we characterize almost co-Kähler manifolds with a conformal vector field. It is proven that if an almost co-Kähler manifold has a conformal vector field that is collinear with the Reeb vector field, then the manifold is a K-almost co-Kähler manifold. It is also shown that if a (κ, μ)-almost co-Kähler manifold admits a Killing vector field V, then either the manifold is K-almost co-Kähler or the vector field V is an infinitesimal strict contact transformation, provided that the (1,1) tensor h remains invariant under the Killing vector field.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference51 articles.

1. Ayar, G.—Chaubey, S. K.: M-projective curvature tensor over cosymplectic manifolds, Differ. Geom. Dyn. Syst. 21 (2019), 23–33.

2. Balkan, Y. S.—Uddin, S.—Alkhaldi, A. H.: A class of ϕ-recurrent almost cosymplectic space, Honam Math. J. 40 (2018), 293–304.

3. Blair, D. E.: Contact Manifold in Riemannian Geometry. Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.

4. Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progr. Math. 203, Birkhauser, Basel, 2002.

5. Blair, D. E.: The theory of quasi-Sasakian structures, J. Diff. Geom. 1 (1967), 331–345.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. $\mathcal{Z^\ast}$-Tensor on $N(k)$-Contact Metric Manifolds Admitting Ricci Soliton Type Structure;Universal Journal of Mathematics and Applications;2024-05-23

2. Conformal vector fields on almost Kenmotsu manifolds;Afrika Matematika;2023-10-25

3. Conformal vector field and gradient Einstein solitons on η-Einstein cosymplectic manifolds;International Journal of Geometric Methods in Modern Physics;2023-03-25

4. Ricci Solitons on Golden Riemannian Manifolds;Mediterranean Journal of Mathematics;2023-02-25

5. Conformal vector fields on N(k)-paracontact and para-Kenmotsu manifolds;Miskolc Mathematical Notes;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3