Semidistributivity and Whitman Property in implication zroupoids

Author:

Cornejo Juan M.1,Sankappanavar Hanamantagouda P.2

Affiliation:

1. Departamento de Matemática , Universidad Nacional del Sur INMABB – CONICET , Alem , 1253, Bahía Blanca , Argentina

2. Department of Mathematics , State University of New York , New Paltz , New York, 12561 , U.S.A

Abstract

Abstract In 2012, the second author introduced, and initiated the investigations into, the variety 𝓘 of implication zroupoids that generalize De Morgan algebras and ∨-semilattices with 0. An algebra A = 〈 A, →, 0 〉, where → is binary and 0 is a constant, is called an implication zroupoid (𝓘-zroupoid, for short) if A satisfies: (xy) → z ≈ [(z′ → x) → (yz)′]′, where x′ := x → 0, and 0″ ≈ 0. Let 𝓘 denote the variety of implication zroupoids and A ∈ 𝓘. For x, yA, let xy := (xy′)′ and xy := (x′ ∧ y′)′. In an earlier paper, we had proved that if A ∈ 𝓘, then the algebra A mj = 〈A, ∨, ∧〉 is a bisemigroup. The purpose of this paper is two-fold: First, we generalize the notion of semidistributivity from lattices to bisemigroups and prove that, for every A ∈ 𝓘, the bisemigroup A mj is semidistributive. Secondly, we generalize the Whitman Property from lattices to bisemigroups and prove that the subvariety 𝓜𝓔𝓙 of 𝓘, defined by the identity: xyxy, satisfies the Whitman Property. We conclude the paper with two open problems.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference26 articles.

1. Balbes, R.—Dwinger, P.: Distributive Lattices, University of Missouri Press, Columbia, 1974.

2. Bernstein, B. A.: A set of four postulates for Boolean algebras in terms of the implicative operation, Trans. Amer. Math. Soc. 36 (1934), 876–884.

3. Birkhoff, G.: Lattice Theory. 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, 1948.

4. Burris, S.—c, H. P.: A Course in Universal Algebra, Springer-Verlag, New York, 1981. The free version (2012) is available online as a PDF file at math.uwaterloo.ca/$\sim$snburris.

5. c, J. M.—Sankappanavar, H. P.: Order in implication zroupoids, Studia Logica 104 (2016), 417–453.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3