On the construction of various soliton solutions of two space-time fractional nonlinear models

Author:

Tariq Kalim U.1ORCID,Liu Jian-Guo2ORCID

Affiliation:

1. Department of Mathematics , 236246 Mirpur University of Science and Technology , Mirpur - 10250 , AJK , Pakistan

2. College of Computer, Jiangxi University of Chinese Medicine , Nanchang , 330004 , Jiangxi , China

Abstract

Abstract In this article, we investigate a couple of nonlinear fractional models of eminent interests subsequently the conformable derivative sense is used to designate the fractional order derivatives. The given structures are transformed into nonlinear ordinary differential equations of integer order, and the extended simple equation technique is then employed to solve the resulting equations. Initially, the nonlinear space time fractional Klein–Gordon equation is considered emerging from quantum and classical relativistic mechanics, which have application in plasma physics, dispersive wave phenomena, quantum field theory, and optical fibres. Later, the (2 + 1)-dimensional time fractional Zoomeron equation is analysed which is convenient to explore the innovative phenomena related to boomerons and trappons. As a result, various new soliton solutions are successfully established. The reported results offer a key implementation for analysing the soliton solutions of nonlinear fractional models which are extremely encouraging arising in the recent era of science and engineering. The 3D simulations have been carried out to demonstrate dynamics of the various soliton solutions for a given set of parameters.

Funder

National Natural Science Foundation of China

Doctoral Research Foundation of Jiangxi University of Chinese Medicine

Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3