Who is the Perfect Match?

Author:

Bellhäuser Henrik1ORCID,Konert Johannes2,Müller Adrienne1,Röpke René3

Affiliation:

1. Universität Mainz , Psychologie in den Bildungswissenschaften , Binger Str. 14-16 , 55099 Mainz , Germany

2. 38963 Beuth Hochschule für Technik , FB VI Informatik und Medien , Luxemburger Str. 10 , 13353 Berlin , Germany

3. RWTH Aachen University , Informatik 9 (Learning Technologies) , Ahornstraße 55 , 52074 Aachen , Germany

Abstract

Abstract Using digital tools for teaching allows to unburden teachers from organizational load and even provides qualitative improvements that are not achieved in traditional teaching. Algorithmically supported learning group formation aims at optimizing group composition so that each learner can achieve his or her maximum learning gain and learning groups stay stable and productive. Selecting and weighting relevant criteria for learning group formation is an interdisciplinary challenge. This contribution presents the status quo of algorithmic approaches and respective criteria for learning group formation. Based on this theoretical foundation, we describe an empirical study that investigated the influence of distributing two personality traits (conscientiousness and extraversion) either homogeneously or heterogeneously on subjective and objective measures of productivity, time investment, satisfaction, and performance. Results are compared to an earlier study that also included motivation and prior knowledge as criteria. We find both personality traits to enhance group satisfaction and performance when distributed heterogeneously.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication,Business, Management and Accounting (miscellaneous),Information Systems,Social Psychology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3