Merging Interactive Information Filtering and Recommender Algorithms – Model and Concept Demonstrator

Author:

Loepp Benedikt1,Herrmanny Katja1,Ziegler Jürgen1

Affiliation:

1. University of Duisburg-Essen, Germany

Abstract

Abstract To increase controllability and transparency in recommender systems, recent research has been putting more focus on integrating interactive techniques with recommender algorithms. In this paper, we propose a model of interactive recommending that structures the different interactions users can have with recommender systems. Furthermore, as a novel approach to interactive recommending, we describe a technique that combines faceted information filtering with different algorithmic recommender techniques. We refer to this approach as blended recommending. We also present an interactive movie recommender based on this approach and report on its user-centered design process, in particular an evaluation study in which we compared our system with a standard faceted filtering system. The results indicate a higher level of perceived user control, more detailed preference settings, and better suitability when the search goal is vague.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication,Business, Management and Accounting (miscellaneous),Information Systems,Social Psychology

Reference44 articles.

1. Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information Retrieval. ACM, 1999.

2. Bostandjiev, S., O’Donovan, J., and Höllerer, T. Taste-Weights: A visual interactive hybrid recommender system. In Proc. RecSys ‘12, ACM (2012), 35–42.

3. Brooke, J. SUS – A quick and dirty usability scale. In Usability Evaluation in Industry. Taylor & Francis, 1996, 189–194.

4. Burke, R. Hybrid web recommender systems. In The Adaptive Web. Methods and Strategies of Web Personalization, P. Brusilovsky, A. Kobsa and W. Nejdl, Eds., Springer, 2007, 377–408.

5. Celik, I., Abel, F., and Siehndel, P. Towards a framework for adaptive faceted search on twitter. In Proc. DAH ’11 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3