Random forest and artificial neural network-based tsunami forests classification using data fusion of Sentinel-2 and Airbus Vision-1 satellites: A case study of Garhi Chandan, Pakistan

Author:

Mateen Shabnam1,Nuthammachot Narissara1,Techato Kuaanan1

Affiliation:

1. Faculty of Environmental Management, Prince of Songkhla University , Hat Yai , Songkhla 90110 , Thailand

Abstract

Abstract This article proposes random forest algorithm (RFA), multi-layer perception (MLP) artificial neural network (ANN), and support vector machine (SVM) method for classifying the fused data of Sentinel-2, Landsat-8, and Airbus Vision-1 satellites for the years 2016 and 2023. The first variant of fusion is performed for Sentinel-2 and Landsat-8 data to sharpen it to 10 m spatial resolution, while in the second case, Sentinel-2 and Airbus Vision-1 data are fused together to achieve a spatial resolution of 3.48 m. MLP-ANN, SVM, and RFA methods are applied to the sharpened dataset for the years 2023 and 2016 having spatial resolutions of 3.48 and 10 m, respectively, and a detailed comparative analysis is performed. Google earth engine is utilized for ground data validation of the classified samples. An enhanced convergence time of 100 iterations was achieved using MLP-ANN for the classification of the dataset at 3.48 m spatial resolution, while the same method took 300 iterations with the dataset at 10 m spatial resolution to achieve a minimum limit Kappa hat score of 0.85. With 10 m spatial resolution, the MLP-ANN achieved an overall accuracy of 96.6% and a Kappa hat score of 0.94, while at 3.48 m spatial resolution, the aforementioned scores are enhanced to 98.5% and 0.97, respectively. Similarly, with 10 m spatial resolution, the RFA achieved an overall accuracy of 92.6% and a Kappa hat score of 0.88, while at 3.48 m spatial resolution, the abovementioned scores are enhanced to 96.5 and 0.95% respectively. In view of the forgoing, the MLP-ANN showed better performance as compared to the RFA method.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3