Evaluation of the current in situ stress in the middle Permian Maokou Formation in the Longnüsi area of the central Sichuan Basin, China

Author:

Zhao Tianbiao12,Qin Qirong1,Li Hu12,Wang Shilin1,Mou Xingyu3

Affiliation:

1. School of Geoscience and Technology, Southwest Petroleum University , Chengdu 610500 , China

2. Sichuan College of Architectural Technology , Chengdu 610399 , China

3. Exploration Division, PetroChina Southwest Oil and Gasfield Company , Chengdu 610051 , China

Abstract

Abstract The middle Permian Maokou Formation in the Longnüsi area in the central Sichuan Basin is currently a key formation for exploration and development. The evaluation of the current in situ stress in this area is of great significance for fracture prediction, well pattern deployment, drilling and construction, and fracturing stimulation. This study clarifies the current direction and magnitude distributions of the in situ stress by evaluating the Maokou Formation in the Longnüsi area using finite-element numerical simulation, acoustic emission experiments, and logging data (including data from imaging logging, array acoustic logging, conventional logging, and cross-dipole acoustic logging). Specifically, the current maximum horizontal stress of the Maokou Formation in the Longnüsi area is mainly in the NW‒SE direction, and the stress direction is greatly affected by the local fault zone. The current minimum horizontal stress magnitude of the Maokou Formation obtained by acoustic emission experiments is between 96.29 and 114.36 MPa, the current maximum horizontal stress magnitude is between 126.01 and 145.10 MPa, and the current horizontal stress difference is between 25.59 and 32.58 MPa. The current minimum and maximum horizontal stress magnitudes both decrease from north to south. The current horizontal stress parameters calculated by Huang’s model are not significantly different from those experimentally measured: there is a difference of less than 8% in the current minimum horizontal stress magnitude, a difference of less than 9% in the maximum horizontal stress magnitude, and a difference of less than 15% in the current horizontal stress difference. Therefore, Huang’s model has good applicability in terms of calculating the current horizontal stresses in the Longnüsi area. The current horizontal stress parameters, which are numerically simulated with the finite-element method, are also not much different from those experimentally measured: there is a difference of less than 11% in the current minimum horizontal stress magnitude, a difference of less than 10% in the maximum horizontal stress magnitude, and a difference of less than 20% in the current horizontal stress difference. The numerically simulated current horizontal stress also decreases from north to south. Therefore, the simulated results are highly accurate. This study clarifies the directions and magnitudes of the current in situ stress state of the Maokou Formation in the Longnüsi area of the central Sichuan Basin and provides a basis for the formulation of exploration and development plans for the Maokou Formation reservoir in the study area.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3