Application of the wavelet transform and Hilbert–Huang transform in stratigraphic sequence division of Jurassic Shaximiao Formation in Southwest Sichuan Basin

Author:

Li Zheng1,Tian Jingchun1,Cai Laixing1,Yang Tian1

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology), Institute of Sedimentary Geology , Chengdu , 610059 , China

Abstract

Abstract In the southwestern Sichuan Basin, the Jurassic Shaximiao Formation encompasses a multitude of working areas, displaying intricate sedimentary traits. Traditional methods of stratigraphic division based on sequence suffer from inherent subjectivity and limitations. This study employs a combined mathematical approach to use the wavelet transform (WT) and the Hilbert–Huang transform (HHT). It decomposes the natural gamma ray (GR) logging curve into energy spectrum plots and wavelet coefficients at different scales, high and low frequency signals at different frequencies, and a set of intrinsic mode function components and residual functions. The study conducted a detailed stratigraphic division of the Jurassic Shaximiao Formation in the southwestern Sichuan Basin using these methods. The WT offers greater resolution for the periodic changes in the base level, whereas the HHT demonstrates a superior correlation with the positions of stratigraphic interfaces. The combined utilization of the continuous wavelet transform, the discrete wavelet transform, and HHT methods has demonstrated encouraging outcomes in the stratigraphic division of the Jurassic Shaximiao Formation. These methods have been shown to enhance the accuracy of stratigraphic division and to reduce the influence of subjective factors. This study presents new insights and approaches for geological data processing, offering significant theoretical and practical implications and novel technical means for oil and gas exploration and development.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3