Introducing an intelligent multi-level retrieval method for mineral resource potential evaluation result data

Author:

Chaokui Li1,Mingxi Liu2,Ruirong Guo1,Yanan Zhao1,Wentao Yang1,Xinchang Zhang3

Affiliation:

1. National-Local Joint Engineering Laboratory of Geospatial Information Technology, Hunan University of Science and Technology , Xiangtan , Hunan, 411201 , China

2. Wuling Power Co., Ltd. , Changsha , 410004 , China

3. Guangzhou University , Guangzhou , Guangdong, 510000 , China

Abstract

Abstract The geological data of the mineral resource potential evaluation results (MRPERs) are diverse and extremely large; efficiently retrieving data remains a challenging problem. In this work, a new way of using the Hadoop platform is proposed. The Hadoop distributed file system is used to store the massive data and construct the data storage model of geological and mineral resources. Using a distributed Hadoop database (HBase) that supports the fast query of a single record, it manages its metadata and retrieves the data of MRPERs quickly. At the same time, a multi-level index directory is designed to support the non-main key query on the HBase. This overcomes the shortcoming that the HBase only supports the simple index based on the main key and realizes the intelligent, efficient retrieval of MRPERs. The validity and feasibility of the proposed method are further verified by experiments using the MRPER data in the Institute of Mineral Resources, Chinese Academy of Geological Sciences.

Publisher

Walter de Gruyter GmbH

Reference23 articles.

1. Yan WY. The design and implementation of geological spatial database based on MapGIS and Oracle. XiangTan: Hunan University of Science and Technology; 2016.

2. Wang WN, Zhao WJ. An efficient image aesthetic analysis system using Hadoop. Signal Process Image Commun. 2015;39(Part C):499–508.

3. Meng J, Yang MJ. Design and implementation of massive scientific and technological information resources management system based on Hadoop. Sci Technol Manag Res. 2017;37(13):181–6.

4. Pan J, Biannic YL, Magoulès F. Parallelizing multiple group-by query in share-nothing environment: A MapReduce study case. Acm International Symposium on High Performance Distributed Computing; 2010. p. 856–63.

5. Hu S, Wu S. Research on preprocessing of vehicle trajectory data based on Hadoop. Lecture Notes Data Eng Commun Technol. 2022;80:1221–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3