Distribution law of Chang 7 Member tight oil in the western Ordos Basin based on geological, logging and numerical simulation techniques

Author:

Guo Qing12,An Huiming1,Zhao Li1,Zhang Leilei1,Tao Liang3

Affiliation:

1. BaiLie School of Petroleum Engineering, Lanzhou City University , Lanzhou , 730070 , China

2. Xi’an Key Laboratory of Tight oil (Shale oil) Development (Xi’an Shiyou University) , Xi’an , Shaanxi 710065 , China

3. Oil and Gas Technology Research Institute Changqing Oilfield Company, Petrochina Company Limited , Xi’an , Shaanxi, 710018 , China

Abstract

Abstract Fine characterization of oil plane distribution in highly heterogeneous tight sandstone is a prerequisite for efficient reservoir development. This study systematically evaluated the distribution characteristics of tight oil in the Chang 7 Member of the Western Ordos Basin using a large number of experimental tests, logging interpretation, and 3D modelling methods. The logging interpretation models of shale content, porosity, permeability, and oil saturation were constructed, and the effective reservoir was identified by establishing the intersection identification pattern of reservoir acoustic wave time difference and deep lateral resistivity. The 3D numerical simulation results showed that the tight oil is distributed between injection and production wells. The areas with high tight oil content are mainly distributed along the WE direction, and a series of high remaining oil zones are formed locally. Under the influence of long-term injection and production, a high permeability zone will be formed between wells, which is similar to a high-speed channel and will be flooded quickly, and a banded remaining oil retention zone will be formed around it. For the horizontal well flooding area, the water flooding range of the water injection well is small, and a large amount of remaining oil is enriched between water injection wells. Finally, the classification standard of the remaining oil in the Chang 72 sub-member of the study area is proposed, and then, the strategy of adopting different development and adjustment schemes according to different types of reservoirs is formed.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3