Addressing incomplete tile phenomena in image tiling: Introducing the grid six-intersection model

Author:

Zhang Ling1,Yu Jinsongdi1,Tong Ruiju2,Wei Dandan1,Fan Yu1

Affiliation:

1. The Academy of Digital China, Fuzhou University , Fuzhou 350108 , China

2. Fujian University of Technology , Fuzhou 350108 , China

Abstract

Abstract With the continuous development of Earth Observation technology, resolution of imagery and gridded data has significantly increased, leading to a rapid increase in data volume. To efficiently acquire and analyze these vast amounts of imagery and gridded data, image tiling technology has been developed to effectively access data of interested areas. Tiling technology divides large-scale image data into smaller tiles, providing fast, accurate, and efficient access support for imagery and gridded data. The spatial grid model, as the foundational framework of the new generation of geographic spatial information, plays a critical role in the retrieval, integration, services, and applications of imagery and gridded data resources. When tiling image data based on the spatial grid model, it always generates both complete and incomplete tiles. Particularly, when conducting image tile retrieval using the same rule-based grid in the retrieval area, incomplete tile phenomena along the boundary regions of the retrieved images often occur, resulting in gaps within the retrieval area. To tackle this issue, in this study, we present a new topological model called the Grid Six-Intersection Model (G-6IM), specifically designed for regular rectangular grids, to accurately represent boundary issues in image tiling. Through a practical case study, we demonstrate the effectiveness and practical application potential of the proposed G-6IM model, providing new insights and guidance for the improvement and optimization of imagery and gridded data tiling technology.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3