Handling imbalanced data in supervised machine learning for lithological mapping using remote sensing and airborne geophysical data

Author:

Nugroho Hary1,Wikantika Ketut23,Bijaksana Satria4,Saepuloh Asep5

Affiliation:

1. Geodetic Engineering Study Program, Faculty of Civil Engineering and Planning, Institut Teknologi Nasional Bandung , Jl. PHH. Mustofa 23 , Bandung , 40124 , Indonesia

2. Geodesy and Geomatics Engineering Study Program, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung , Jl. Ganesha 10 , Bandung , 40132, Jawa Barat , Indonesia

3. Center for Remote Sensing, Institut Teknologi Bandung , Jl. Ganesha 10 , Bandung , 40132, Jawa Barat , Indonesia

4. Geophysical Engineering Study Program, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung , Jl. Ganesha 10 , Bandung , 40132, Jawa Barat , Indonesia

5. Geophysical Engineering Study Program, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung , Jl. Ganesha 10 , Bandung , 40132, Jawa Barat , Indonesia

Abstract

Abstract With balanced training sample (TS) data, learning algorithms offer good results in lithology classification. Meanwhile, unprecedented lithological mapping in remote places is predicted to be difficult, resulting in limited and unbalanced samples. To address this issue, we can use a variety of techniques, including ensemble learning (such as random forest [RF]), over/undersampling, class weight tuning, and hybrid approaches. This work investigates and analyses many strategies for dealing with imbalanced data in lithological classification based on RF algorithms with limited drill log samples using remote sensing and airborne geophysical data. The research was carried out at Komopa, Paniai District, Papua Province, Indonesia. The class weight tuning, oversampling, and balance class weight procedures were used, with TSs ranging from 25 to 500. The oversampling approach outperformed the class weight tuning and balance class weight procedures in general, with the following metric values: 0.70–0.80 (testing accuracy), 0.43–0.56 (F1 score), and 0.32–0.59 (Kappa score). The visual comparison also revealed that the oversampling strategy gave the most reliable classifications: if the imbalance ratio is proportionate to the coverage area in each lithology class, the classifier capability is optimal.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Evaluation of Sampling Techniques in Addressing Class Imbalance Across Diverse Datasets;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3