Experimental analysis on creep mechanics of unsaturated soil based on empirical model

Author:

Qiao Zhang12

Affiliation:

1. Southwest Jiaotong University , Chengdu , China

2. Yuqian Railway Co., Ltd . Chongqing , China

Abstract

Abstract In order to reflect the creep characteristics of unsaturated silty clay, a triaxial compression consolidation drainage creep test was conducted under the condition of controlling the matric suction. According to the results of the creep test, combined with the empirical models, Mesri model and Log-modified model, the relationship between the initial tangent modulus and the matric suction was established, and two empirical models of unsaturated soil creep considering the effect of matric suction were constructed. The study confirmed the stress–strain through the ε/D–ε relationship curve, and determined the parameters F and n through power function. The methods for determining the strain–time relationship parameters of the two improved models are different. The improved Mesri model was obtained by fitting the ln ε–ln t relationship, while the improved Log-modified model was solved by the BFGS algorithm and the general global optimization method. By comparing the two improved models of unsaturated soil creep tests, it was found that the improved Mesri model can more accurately describe the creep characteristics of unsaturated soils, which confirms the rationality and feasibility of this model and method.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3