Identification of high-temperature targets in remote sensing based on correspondence analysis

Author:

Yu Yifan1,Du Huishi1,Fan Juan1,Liu Jiafu1,Liu Jiping1,Pan Jun2

Affiliation:

1. College of Tourism and Geographic Science, Jilin Normal University , Siping 136000 , China

2. College of Geo-Exploration Science and Technology, Jilin University , Changchun 130000 , China

Abstract

Abstract High temperature targets (temperature above 500 K), are the special on the surface of the earth such as forest fire, prairie fire, oil well torches, heap coking, volcanic eruptions, significantly different from those of normal surfaces at lower temperatures. Identification of high-temperature targets plays an important role in environmental monitoring, disaster warning, and resource investigation. In remote sensing data, high-temperature target pixels and bands are studied. And they are deemed samples and variables, respectively, in multivariate analysis. And classification of samples for identification of high-temperature targets is necessary. To classify samples, feature analysis of spectrum needs to be done first. In feature analysis of spectrum, feature bands that can be used to distinguish samples need to be selected. Correspondence analysis is the method that can project samples and variables into the same factor space in the meantime. It can realize the classification of samples and variables synchronously, and the results can be interpreted by each other. First, the correspondence analysis is conducted on Landsat8/OLI remote sensing imagery to build the relationship between samples and variables. After that the correspondence relationship between identification results of high-temperature targets and feature bands can be built in the physical theory of remote sensing and factors which have indicative significance on fire are confirmed. Finally, the single band threshold method is adopted to realize high temperature target recognition by using factor scores. In the field confirmation, results suggest that the precision of identification of high-temperature targets reaches 92%. And we also get a consistent result with SWIR temperature inversion.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3