Evaluation of fractures using conventional and FMI logs, and 3D seismic interpretation in continental tight sandstone reservoir

Author:

Qiu Xiangliang1,Tan Chengqian2,Lu Yuanyuan3,Yin Shuai2ORCID

Affiliation:

1. Xi’an Shiyou University, School of Petroleum Engineering , Xi’an 710065 , China

2. Xi’an Shiyou University, School of Earth Science and Engineering , Xi’an 710065 , China

3. CNOOC Research Institute Corporation Ltd. , Beijing 100028 , China

Abstract

Abstract Due to the complex pore structures and strong heterogeneity of fractured reservoirs, it is a hot and difficult point in petroleum geology to identify fractures using logging principles. In this paper, taking the tight sandstone reservoir of the Chang 8 Member in the Huanjiang Oilfield as an example, field outcrops, cores, thin sections, and logging identification methods were used for quantitative description and fine logging evaluation of fractures. The research shows that high-angle, medium-low-angle, near-vertical, and horizontal fractures are developed in the Chang 8 Member of the Huanjiang Oilfield. The main ones are high-angle fractures, followed by horizontal fractures with a low degree of fillings. Under the constraints of core and imaging logging data, three fracture sensitivity logging parameters of acoustic wave time difference, natural gamma, and dual induction-octalateral resistivity were optimized, and a comprehensive fracture probability index was proposed. Seventy-nine fracture development intervals were identified based on log curve characteristics and fracture probability indexes. The coincidence rate of fracture logging identification results with the core observation and imaging logging interpretation is 80.6%. The research results can provide a theoretical basis for the efficient development of fractured continental tight sandstone reservoirs in similar areas.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3