Uncertainty assessment of 3D geological models based on spatial diffusion and merging model

Author:

Nie Xiaoyan1,Lu Cai2,Luo Kai1

Affiliation:

1. School of Engineering and Technology, Chengdu College of University of Electronic and Science Technology of China , 611731 , Chengdu , China

2. School of Information and Communication Engineering, University of Electronic and Science Technology of China , 611731 , Chengdu , China

Abstract

AbstractThe geological model plays an important role in geophysics and engineering geology. The data source of geological modeling comes from interpretation data, borehole data, and outcrop data. Due to economic and technical limitations, it is impossible to obtain highly accurate and high-density data sources. The sparsity and inaccuracy of data sources lead to the uncertainty in geological models. Unlike the problem of probability, there is not enough samples for a geological model. Spatial diffusion model and merging model are introduced, which are more satisfied with the cognition of uncertainty than the existing methods. And then, using conditional information entropy, a quantification method of geological uncertainty, is proposed. Compared with the approaches of information entropy, this method took full account of the constraints of geological laws. Based on the uncertainty models and conditional information entropy, a framework of uncertainty assessment in geological models is established. It is not necessary in our framework to create multiple geological models, which is a time-consuming and laborious task. The application of Hashan survey located at north of China shows that the method and framework of this study are reasonable and effective.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3