Unrestricted Harmonic Balance

Author:

Seelig Friedrich Franz1

Affiliation:

1. Institut für Physikalische und Theoretische Chemie der Universität Tübingen, (Lehrstuhl für Theoretische Chemie), Tübingen

Abstract

Abstract Periodic structures in chemical kinetic systems can be evaluated by an extension of the well-known method of harmonic balance, which yields very simple expressions in the case of linear systems containing only zero and first order reactions. The far more interesting non-linear systems containing e.g. second order reactions which in case of open systems far from thermodynamic equilibrium give rise to non-classical phenomena like oscillations, chemical waves, excitability, hysteresis, multistability, dissipative structures etc. can be treated in a similar way by introducing new pseudo-linear quantities utilizing certain group properties of harmonic expansions. The resulting complicated implicit non-linear algebraic equations are solved by a method developed by Powell and show good convergence. Since this method - in contrast to the conventional method of simulation - is independent from the stability of the periodic structure to be evaluated it can even be applied to unstable cases where the simulation method necessarily fails. An evaluation of the stability is included in the developed computer program.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An approximate method for solving force and displacement transmissibility of a geometrically nonlinear isolation system;International Journal of Non-Linear Mechanics;2020-10

2. The Method of Harmonic Balance;Nonlinear Dynamical Systems in Engineering;2011-10-03

3. An analytical approximate technique for a class of strongly non-linear oscillators;International Journal of Non-Linear Mechanics;2006-07

4. Large amplitude non-linear oscillations of a general conservative system;International Journal of Non-Linear Mechanics;2004-07

5. Choices in the harmonic balance technique;Journal of Physics A: Mathematical and General;1993-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3