Artemisinin protects against cerebral ischemia and reperfusion injury via inhibiting the NF-κB pathway

Author:

Ji Hui1,Jin Haifeng1,Li Guangwei1,Jin Li1,Ren Xiaoxu1,Lv Ying1,Wang Yuchun2

Affiliation:

1. Department of Basic Medicine, Qiqihar Medical University , Qiqihar , Heilongjiang 161006 , China

2. College of Pharmacy, Qiqihar Medical University , Qiqihar , Heilongjiang 161006 , China

Abstract

Abstract This study investigated whether artemisinin (ART) exerts a neuroprotective effect against cerebral ischemia/reperfusion (I/R) injury. Hypoxia-glucose deprivation and reoxygenation (OGD/R) of SH-SY5Y cells were used as the I/R injury model in vitro. Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and lactate dehydrogenase (LDH) release was measured. Cell apoptosis and apoptosis-associated protein expression were determined via flow cytometry and western blotting, respectively. The levels of glutathione peroxidase, superoxide dismutase, catalase, and malondialdehyde were determined. The secretion of tumor necrosis factor-α and interleukin-1β was measured using ELISA. The activation of the nuclear factor kappa B (NF-κB) pathway was also determined. The indicated ART concentrations (0, 25, 50, 75, and 100 μM) had no significant effect on SH-SY5Y cell viability and LDH activity. ART promoted cell viability, reduced cell apoptosis, repressed cellular inflammation, and inhibited cellular oxidative stress and NF-κB signaling pathway in OGD/R-induced SH-SY5Y cells. In addition, all the protective effects of ART on OGD/R-induced SH-SY5Y cell injury were significantly reversed by an NF-κB agonist. In conclusion, ART protects neurons from OGD/R-induced damage in vitro by inhibiting the NF-κB signaling pathway. These results suggest that ART may be a potential agent for the treatment of cerebral I/R injury.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3