Is there any effect on imprinted genes H19, PEG3, and SNRPN during AOA?

Author:

Liang Rong1,Fang Fang1,Li Sen2,Chen Xi1,Zhang Xiaohong3,Lu Qun1

Affiliation:

1. Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China

2. Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Guangdong Province , Guangzhou , 510317 , China

3. Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China

Abstract

Abstract Assisted oocyte activation (AOA) has been proposed as an effective technique to overcome the problem of impaired fertilization after intracytoplasmic sperm injection (ICSI) but the safety of AOA remains a concern. We aimed to investigate if AOA induces imprinting effects on embryos. We used 13 cleavage embryos, nine blastocysts, and eight placentas from 15 patients. The subjects were divided into six groups by tissue type and with or without AOA. The methylation levels of imprinted genes (H19, paternally expressed gene [PEG3] and small nuclear ribonucleoprotein polypeptide N [SNRPN]) were tested by pyrosequencing. We observed different methylation levels among cleavage embryos. The variability was much more remarkable between cleavage embryos than blastocysts and placenta tissues. The methylation levels were especially higher in SNRPN and lower in the H19 gene in AOA embryos than those without AOA. No significant difference was found either among blastocysts or among placenta tissues regardless of AOA. The methylation levels of the three genes in blastocysts were very similar to those in the placenta. Compared to conventional ICSI, AOA changed imprinting methylation rates at H19 and SNRPN in cleavage embryos but not in the blastocyst stage and placenta. We recommend that blastocyst transfer should be considered for patients undergoing AOA during in vitro fertilization.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3