miR-212-5p inhibits nasopharyngeal carcinoma progression by targeting METTL3

Author:

Zhou Hongyu1,Zhang Nana1

Affiliation:

1. Department of Otorhinolaryngology Head and Neck Surgery, Wuhan Fourth Hospital , Wuhan 430033 , Hubei , China

Abstract

Abstract This study was conducted to investigate the effect of microRNA-212-5p (miR-212-5p) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) cells. Microarray datasets (EXP00394 and EXP00660) were downloaded from the dbDEMC database, and the differentially expressed microRNAs between high-grade and low-grade NPC were analyzed. miR-212-5p and methyltransferase like 3 (METTL3) expression levels in NPC tissues and cells were determined by the quantitative real-time polymerase chain reaction and Western blot. Besides, the relationship between miR-212-5p expression and clinicopathological characteristics of patients was analyzed by the Chi-square test. Cell counting kit-8 assay, 5-ethynyl-2-deoxyuridine (EdU) assay, and flow cytometry were adopted to detect the effect of miR-212-5p on the cell proliferation and apoptosis. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis were performed to explore the potential biological functions and the signal pathways related to the target genes of miR-212-5p. Bioinformatics prediction and dual luciferase reporter gene assay were used to verify the relationship between miR-212-5p and METTL3 3′ untranslated region. Besides, western blot was adopted to detect the expression of METTL3. Gene set enrichment analysis was performed to analyze the downstream pathways in which METTL3 was enriched. It was found that miR-212-5p was downregulated in NPC tissues, and the low miR-212-5p expression was associated with lymph node metastasis and poor differentiation. miR-212-5p overexpression inhibited the growth and promoted apoptosis of NPC cells; miR-212-5p inhibition functioned oppositely. Mechanistically, miR-212-5p inhibited the proliferation and promoted apoptosis of NPC cells via suppressing METTL3 expression. miR-212-5p/METTL3 was associated with processes of RNA transport and cell cycle. In conclusion, miR-212-5p inhibits the progression of NPC by targeting METTL3.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3