Notoginsenoside R1 alleviates spinal cord injury through the miR-301a/KLF7 axis to activate Wnt/β-catenin pathway

Author:

Tang Zhi1,Yang Chunhua2,He Zhengwen1,Deng Zhiyong1,Li Xiaoming3

Affiliation:

1. Department of Neurosurgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha 410013 , Hunan , China

2. Department of Orthopaedics, The First Hospital of Changsha , Kaifu District , Changsha 410005 , Hunan , China

3. Department of Orthopaedics, The First Hospital of Changsha , No. 311, Yingpan Road, Kaifu District , Changsha 410005 , Hunan , China

Abstract

Abstract Spinal cord injury (SCI) is a devastating incident that induces neuronal loss and dysfunction. Notoginsenoside R1 (NGR1) has been reported to exhibit a neuroprotective role after SCI. In this study, the effect and molecular mechanisms of NGR1 in models of SCI were further investigated. Rat adrenal pheochromocytoma cell line (PC-12) were stimulated with lipopolysaccharide (LPS) to establish a cell model of SCI-like condition. The changes of proinflammatory cytokines and associated proteins were analyzed using enzyme linked immunosorbent assay (ELISA) and western blotting. A rat model of SCI was established. Nissl staining were used to observe the morphological characteristics of spinal cord tissues. reverse transcription-quantitative PCR (RT-qPCR) was used to measure the expression of miR-301a andKrüppel-like factor 7 (KLF7). Our results showed that NGR1 alleviated LPS-triggered apoptosis and inflammation in PC-12 cells. MiR-301a was upregulated in LPS-stimulated PC-12 cells and was downregulated by NGR1 treatment. MiR-301a overexpression reversed the effect of NGR1 in LPS-treated PC-12 cells. KLF7 was verified to be targeted by miR-301a. NGR1 activated Wnt/β-catenin signaling in LPS-treated PC-12 cells by inhibiting miR-301a and upregulating KLF7. Moreover, blocking wingless/integrated (Wnt)/β-catenin signaling eliminated the protective effect of NGR1 against SCI in vitro and in vivo. Overall, NGR1 could reduce inflammation and apoptosis and promote functional recovery of SCI rats by activating Wnt/β-catenin pathway.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3