Identification of osteoporosis based on gene biomarkers using support vector machine

Author:

Lv Nanning1,Zhou Zhangzhe2,He Shuangjun3,Shao Xiaofeng2,Zhou Xinfeng2,Feng Xiaoxiao1,Qian Zhonglai2,Zhang Yijian2,Liu Mingming1

Affiliation:

1. Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang , Lianyungang , Jiangsu 222003 , China

2. Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University , Suzhou , Jiangsu 215000 , China

3. Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People’s Hospital of Danyang , Danyang , Jiangsu 212300 , China

Abstract

Abstract Osteoporosis is a major health concern worldwide. The present study aimed to identify effective biomarkers for osteoporosis detection. In osteoporosis, 559 differentially expressed genes (DEGs) were enriched in PI3K-Akt signaling pathway and Foxo signaling pathway. Weighted gene co-expression network analysis showed that green, pink, and tan modules were clinically significant modules, and that six genes (VEGFA, DDX5, SOD2, HNRNPD, EIF5B, and HSP90B1) were identified as “real” hub genes in the protein–protein interaction network, co-expression network, and 559 DEGs. The sensitivity and specificity of the support vector machine (SVM) for identifying patients with osteoporosis was 100%, with an area under curve of 1 in both training and validation datasets. Our results indicated that the current system using the SVM method could identify patients with osteoporosis.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3