Thermal and Flame Retardant Properties of Shaped Polypropylene Fibers Containing Modified-Thai Bentonite

Author:

Prahsarn Chureerat1,Roungpaisan Nanjaporn2,Klinsukhon Wattana1,Suwannamek Natthaphop1,Padee Sirada1

Affiliation:

1. National Metal and Materials Technology Center , 114 Pathoyothin Klong 1, Klong Luang, Pathumthani 12120 , Thailand . Phone 662 5646500 Fax 662 5646446

2. Department of Engineering , Ratchamangkala University of Technology , 39 Moo 1, Rangsit-Nakhonnayok Rd., Thanyaburi, Pathumthani 12110 , Thailand .

Abstract

Abstract Tetraphenyl phosphonium-modified organoclay (TPP-Mt) was prepared by modifying montmorillonite-rich Thai bentonite via ion exchange. TGA results revealed that TPP-Mt possessed high thermal stability, where degradation occurred at a temperature range of 418-576°C. The obtained TPP-Mt/PP nanocomposites exhibited degradation at higher temperatures than PP (410-420°C vs. 403°C). Fibers of different cross-sectional shapes (circular, circular hollow, and cross) containing 1, 2 and 3%wt TPP-Mt were prepared and characterized. Nonwovens of 3%wt TPPMt/PP fibers were fabricated for flame retardant test. From results, nonwovens of TPP-Mt/PP fibers exhibited self-extinguishing characteristic and the areas of burning were less than that of PP nonwoven (14.5-31.6% vs. 95.6%). Nonwovens of cross-shaped fibers showed the best flame retardant property, followed by those of circular hollow and circular fibers. The flame retardant properties observed in nonwovens were explained due to the inter-fiber spaces between cross-shaped fibers and center hole in circular hollow fibers, which could trap initiating radicals inside, thus reducing flame propagation. In addition, large surface area in cross-shaped fibers could help in increasing the flame retardant effectiveness due to more exposure of TPP-Mt particles to the flame. Knowledge obtained in this study offered an approach to produce flame retardant nonwovens via a combination of modified organolcay and fiber shape.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3