Fabric Selection for the Reference Clothing Destined for Ergonomics Test of Protective Clothing: Physiological Comfort Point of View

Author:

Bartkowiak Grażyna1,Frydrych Iwona12,Greszta Agnieszka1

Affiliation:

1. Department of Personal Protective Equipment, Central Institute for Labour Protection - National Research Institute, Lodz, Poland

2. Faculty of Material Technologies and Textile Design, Lodz University of Technology, Lodz, Poland

Abstract

Abstract The currently used methods of ergonomic assessment of protective clothing depend on the subjective feeling of research participants and don’t take into consideration all aspects of its use. Therefore, more amount of work is undertaken toward the development of new research tools for the ergonomic assessment of protective clothing. Research was carried out at the Central Institute for Labour Protection – National Research Institute in Lodz. A new methodology will take into consideration a variant of reference clothing, which is related to the results of ergonomics research of protective clothing. Preparation of the reference clothing initiated by picking the appropriate fabric is based on the results of parameters influencing the physiological comfort and sensorial comfort. In the current part, results of different fabric parameters are presented, which are related to physiological comfort, i.e., the thermal resistance, water vapor resistance, hygroscopicity, and air permeability. In the next part of research, we will focus on the parameters related to objective sensorial feelings, i.e., total hand value and its components. Seven fabrics, including six cotton/polyester fabrics, diverse in terms of constituent fiber content and structure parameters (weave, thread density per 1 dm, thread linear density, mass per square meter, thickness), and Tencel/polyester fabric were tested. The best in terms of thermal resistance, water vapor resistance, and air permeability was the cotton/polyester fabric (35% cotton/65% PES) with the smallest mass per square meter. This fabric also exhibits the high hygroscopicity of 7.5%, which puts it into the fourth position.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

Reference31 articles.

1. [1] Adams, P.S., Keyserling, W.M. (1993). Three methods for measuring range of motion while wearing protective clothing: A comparative study. International Journal of Industrial Ergonomics,12, 177-191.

2. [2] Bartkowiak, G., Dąbrowska, A., Włodarczyk, B. (2015). Construction of a garment for an integrated liquid cooling system, Textile Research Journal, 85(17), 1809-1816.

3. [3] Behera, B., Hari, P. (Ed.). (2010). Woven textile structure: Theory and applications. Woodhead Publishing (Cambridge).

4. [4] Das, B., Das, A., Kothari. V., et al. (2007). Moisture transmission through textiles Part II: Evaluation Methods and Mathematical Modelling. Autex Research Journal, 7(3), 194-216.

5. [5] Directive 89/686/EEC: Personal Protective Equipment. Web site: http://eur-lex.europa.eu/legal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3