Low-Energy Electron Diffraction from Ag(111): Intensity-versus-Energy Curves and Absolute Intensity of the (00) Beam

Author:

Lagally Max G.12

Affiliation:

1. 1Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin-Dahlem, Germany

2. 2Present address: Physics Dept., Univ. of Wisconsin, Madison, Wisconsin. Partial support by the U.S. Air Force Office of Scientific Research, Grant No. AF-AFOSR 69-1677.

Abstract

The intensity of the (00) beam of a (111) surface of Ag has been measured with a Faraday cage as a function of the energy of the incident beam (10 < E < 280 eV), the grazing angle of incidence (46.5° < φ < 83.5°), two azimuths differing by 180°, and the temperature. The I vs E curves, when compared with data for Ag ( 111 ) of other workers who have used different methods of surface preparation, show good agreement in the structure over the whole range of incident angles, indicating that LEED is not strongly sensitive to surface condition. The I vs E curves for the two azimuths are identical, a necessary result of the reciprocity theorem. For comparison with the I vs E structure, a complete 3-beam geometric model is used. This differs from a simple Ewald construction in that it considers also the Bragg conditions between intermediate beams and the final beam. It also requires that there be no difference in the effect of intermediate forward and backward scattered beams. It is shown that the number of possible beams is much too large even at low energies to make positive identification of any structure in the I vs E curves. A comparison with a rigorous multiple-scattering theory yields agreement in the number and position of peaks, but not in heights and widths of peaks. The possibility of comparison of absolute intensities in theory and experiment is investigated and an attempt is made to remove the major differences. Intensity vs temperature measurements are made at closely spaced energies in order to extract the rigid-lattice scattering. Correction of this intensity for surface plasma losses leads finally to maximum scattered intensities of 2% at 100 eV, 10% at 60 eV, and up to 40% at energies below 20 eV.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3