Technical Aspects of Automated Item Generation for Blended Learning Environments in Biology

Author:

Timm Justin1ORCID,Otto Benjamin2,Schramm Thilo1ORCID,Striewe Michael2,Schmiemann Philipp1ORCID,Goedicke Michael2

Affiliation:

1. 27170 University of Duisburg-Essen , Biology Education , Universitätsstraße 5 , Essen , Germany

2. 27170 University of Duisburg-Essen , paluno - The Ruhr Institute for Software Technology , Essen , Germany

Abstract

Abstract Using two case studies from biology, the article demonstrates and analyses how domain-specific self-learning items with variable content can be generated automatically for a blended learning environment. It shows that automated item generation works well even for highly specific technical properties and that a good item quality can be produced. Evaluations are based on sample exercises from two courses in botany and genetics, each with more than 100 participants.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication,Business, Management and Accounting (miscellaneous),Information Systems,Social Psychology

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Which factors influence the success in pedigree analysis?;International Journal of Science Education;2023-01-29

2. Domain-Specific Automatic Item Generation for Higher Competence Levels: A Comparative Study on Three Cases;Methodologies and Intelligent Systems for Technology Enhanced Learning, 13th International Conference;2023

3. Secondary Students’ Reasoning on Pedigree Problems;CBE—Life Sciences Education;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3