Matrix Analysis for Continuous-Time Markov Chains

Author:

Le Hung V.1,Tsatsomeros M. J.1

Affiliation:

1. Mathematics and Statistics , Washington State University , Pullman ,

Abstract

Abstract Continuous-time Markov chains have transition matrices that vary continuously in time. Classical theory of nonnegative matrices, M-matrices and matrix exponentials is used in the literature to study their dynamics, probability distributions and other stochastic properties. For the benefit of Perron-Frobenius cognoscentes, this theory is surveyed and further adapted to study continuous-time Markov chains on finite state spaces.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology,Algebra and Number Theory

Reference15 articles.

1. [1] R. Bellman, Introduction to Matrix Analysis, Second Edition, SIAM, Philadelphia, 1997.10.1137/1.9781611971170

2. [2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses - Theory and Applications, vol. 15, Springer-Verlag, New York, 2003.

3. [3] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.10.1137/1.9781611971262

4. [4] I.I Gikhmam and A.V. Skorokhod, Introduction to the Theory of Random Processes, W.B. Saunders, Philadelphia, 1969.

5. [5] G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford University Press, 2009.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuous-Time Markov Processes for Reliability Analysis: A Comprehensive Study;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

2. A node-based SIRS epidemic model on two-layer interconnected networks: Dynamical analysis of interplay between layers;Journal of the Franklin Institute;2024-05

3. Pseudoinverses of Signed Laplacian Matrices;SIAM Journal on Matrix Analysis and Applications;2023-05-17

4. Hitting times, number of jumps, and occupation times for continuous-time finite state Markov chains;Statistics & Probability Letters;2023-04

5. Analysis of fair fee in guaranteed lifelong withdrawal and Markovian health benefits;Annals of Finance;2023-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3